Source code for circlespacking

# -*- coding: utf-8 -*-
"""
Module to define particular circular tangents in a closed polygon in
:math:`\\mathbb{R}^2`.
"""


# %%
[docs]class pckCirclesInPolygon: '''Creates an instance of an object that defines circular particles tangent in a fractal way inside of a closed polygon in :math:`\\mathbb{R}^2`. Attributes: coordinates ((n, 2) `numpy.ndarray`): Coordinates of vertices of the\ polygon. depth (`int`): Depth fractal for each triangle that compose the\ triangular mesh. If this number is not given, then,\ the fractal generation of circles is done up to a circle\ reachs a radius to lower than the five percent of the\ incircle radius. Large values of `depth` might produce internal\ variables that tend to infinte, then a\ ``ValueError`` is produced with a warning message\ ``array must not contain infs or NaNs``. Note: The class ``pckCirclesInPolygon`` requires\ `NumPy <http://www.numpy.org/>`_,\ `Matplotlib <https://matplotlib.org/>`_ and\ `Triangle <http://dzhelil.info/triangle/>`_ Examples: >>> from numpy import array >>> from circlespacking import pckCirclesInPolygon >>> coords = array([[1, 1], [2, 5], [4.5, 6], [8, 3], [7, 1], [4, 0]]) >>> pckCircles = pckCirclesInPolygon(coords) >>> pckCircles.__dict__.keys() dict_keys(['coordinates', 'depth', 'CDT', 'listCircles']) ''' def __init__(self, coordinates, depth=None): '''Method for initializing the attributes of the class.''' self.coordinates = coordinates self.depth = depth # initializing methods self.trianglesMesh() self.generator()
[docs] def trianglesMesh(self): '''Method to generate a triangles mesh in a polygon by using `Constrained Delaunay triangulation\ <https://en.wikipedia.org/wiki/Constrained_Delaunay_triangulation>`_. Return: verts ((n, 3, 2) `numpy.ndarray`): Vertices of each triangle that\ compose the triangular mesh. n means the number of triangles;\ (3, 2) means the index vertices and the coordinates (x, y)\ respectively. Examples: >>> from numpy import array >>> from basegeometry import Polygon >>> from circlespacking import pckCirclesInPolygon >>> coordinates = array([[1, 1], [2, 5], [4.5, 6], [6, 4], [8, 3], [7, 1], [4.5, 1], [4, 0]]) >>> polygon = Polygon(coordinates) >>> boundCoords = polygon.boundCoords >>> pckCircles = pckCirclesInPolygon(boundCoords) >>> verts = pckCircles.trianglesMesh() >>> from numpy import array >>> from basegeometry import Polygon >>> from circlespacking import pckCirclesInPolygon >>> coordinates = array([[2, 2], [2, 6], [8, 6], [8, 2]]) >>> polygon = Polygon(coordinates) >>> boundCoords= polygon.boundCoords >>> pckCircles = pckCirclesInPolygon(boundCoords) >>> verts = pckCircles.trianglesMesh() ''' import numpy as np from triangle import triangulate # polygon area by applying the gauss equation area = 0.5*abs(sum(self.coordinates[:-1, 0] * self.coordinates[1:, 1] - self.coordinates[:-1, 1] * self.coordinates[1:, 0])) index = np.arange(len(self.coordinates[:-1])) indexSegmts = np.column_stack((index, np.hstack((index[1:], [0])))) # Max area of the triangles in the Constrained Delaunay triangulation maxArea = np.random.uniform(0.25 * area) steinerPts = np.random.uniform(5, 50) # constrained Delaunay triangulation self.CDT = triangulate(tri={'vertices': self.coordinates[:-1], 'segments': indexSegmts}, opts='pq20a'+str(maxArea)+'S'+str(steinerPts)) vertsIndex = self.CDT['vertices'] trianglesIndex = self.CDT['triangles'] verts = vertsIndex[trianglesIndex] return verts
[docs] def generator(self): '''Method to generate circular particles in each triangle of the triangular mesh. Returns: listCircles (`list` of Circle objects): `list` that contain all\ the circles object packed in the polygon. Examples: >>> from numpy import array >>> from circlespacking import pckCirclesInPolygon >>> coords = array([[2, 2], [2, 6], [8, 6], [8, 2]]) >>> pckCircles = pckCirclesInPolygon(coords) >>> lstCircles = pckCircles.generator() # list of circles ''' from basegeometry import Triangle vertsTriangles = self.trianglesMesh() # Triangles mesh in polygon self.listCircles = list() for vert in vertsTriangles: self.listCircles += Triangle(vert).packCircles(depth=self.depth, want2plot=False) return self.listCircles
[docs] def plot(self, plotTriMesh=False): '''Method for show a graphic of the circles generated within of the polyhon. Parameters: plotTriMesh (`bool`): Variable to check if it also want to show\ the graph of the triangles mesh. The default value is ``False`` Examples: .. plot:: from numpy import array from basegeometry import Polygon from circlespacking import pckCirclesInPolygon coordinates = array([[1, 1], [2, 5], [4.5, 6], [8, 3], [7, 1], [4, 0]]) polygon = Polygon(coordinates) boundCoords = polygon.boundCoords pckCircles = pckCirclesInPolygon(boundCoords, depth=5) pckCircles.plot(plotTriMesh=True) >>> from numpy import array >>> from basegeometry import Polygon >>> from circlespacking import pckCirclesInPolygon >>> coordinates = array([[1, 1], [2, 5], [4.5, 6], [6, 4], [8, 3], [7, 1], [4.5, 1], [4, 0]]) >>> polygon = Polygon(coordinates) >>> boundCoords = polygon.boundCoords >>> pckCircles = pckCirclesInPolygon(boundCoords) >>> pckCircles.plot() >>> from slopegeometry import AnthropicSlope >>> from circlespacking import pckCirclesInPolygon >>> slopeGeometry = AnthropicSlope(12, [1, 1.5], 10, 10) >>> boundCoords = slopeGeometry.boundCoords >>> pckCircles = pckCirclesInPolygon(boundCoords) >>> pckCircles.plot(plotTriMesh=True) .. plot:: from numpy import array from slopegeometry import NaturalSlope from circlespacking import pckCirclesInPolygon surfaceCoords = array([[-2.4900, 18.1614], [0.1022, 17.8824], [1.6975, 17.2845], [3.8909, 15.7301], [5.8963, 14.3090], [8.1183, 13.5779], [9.8663, 13.0027], [13.2865, 3.6058], [20.2865, 3.6058], [21.4347, 3.3231], [22.2823, 2.7114], [23.4751, 2.2252], [24.6522, 1.2056], [25.1701, 0.2488]]) slopeGeometry = NaturalSlope(surfaceCoords) boundCoords = slopeGeometry.boundCoords pckCircles = pckCirclesInPolygon(boundCoords) pckCircles.plot(plotTriMesh=True) ''' import numpy as np import matplotlib.pyplot as plt from triangle import plot as tplot # plotting fig = plt.figure() ax = fig.add_subplot(111) ax.plot(np.hstack((self.coordinates[:, 0], self.coordinates[0, 0])), np.hstack((self.coordinates[:, 1], self.coordinates[0, 1])), '-k', lw=1.5, label='Polygon') ax.axis('equal') ax.set_xlabel('$x$ distance') ax.set_ylabel('$y$ distance') ax.grid(ls='--', lw=0.5) for circle in self.listCircles: ax.add_patch(plt.Circle(circle.center, circle.radius, fill=False, lw=1, ec='black')) # plotting triangular mesh if plotTriMesh: fig = plt.figure() ax = fig.add_subplot(111) ax.grid(ls='--', lw=0.5) tplot.plot(ax, **self.CDT) ax.axis('equal') return
[docs] def frecuencyHist(self): '''Method to show the histogram of the diameters of the circular particles packed in a closed polygon in :math:`\\mathbb{R}^2`. Examples: .. plot:: from numpy import array from basegeometry import Polygon from circlespacking import pckCirclesInPolygon coordinates = array([[1, 1], [2, 5], [4.5, 6], [6, 4], [8, 3], [7, 1], [4.5, 1], [4, 0]]) polygon = Polygon(coordinates) boundCoords = polygon.boundCoords pckCircles = pckCirclesInPolygon(boundCoords, 10) pckCircles.frecuencyHist() ''' import numpy as np import math import matplotlib.pyplot as plt # Obtaining diameters histogram n = len(self.listCircles) # simple size # Number of bins according to Sturges equation numBins = math.floor(1 + math.log(n, 2)) diams = [circle.diameter for circle in self.listCircles] bins = np.linspace(min(diams), max(diams), numBins) # plotting plt.style.use('seaborn-white') fig = plt.figure() ax = fig.add_subplot(111) ax.hist(diams, bins) ax.grid(ls='--', lw=0.5) ax.set_xlabel('Diameters') ax.set_ylabel('Frecuency') return
[docs] def loglogDiagram(self): '''Method to show the log-log graph of the diameters and quantities of circular particles packed in a closed polygon in :math:`\\mathbb{R}^2`. Examples: .. plot:: from numpy import array from basegeometry import Polygon from circlespacking import pckCirclesInPolygon coordinates = array([[1, 1], [2, 5], [4.5, 6], [6, 4], [8, 3], [7, 1], [4.5, 1], [4, 0]]) polygon = Polygon(coordinates) boundCoords = polygon.boundCoords pckCircles = pckCirclesInPolygon(boundCoords, 10) pckCircles.loglogDiagram() ''' import matplotlib.pyplot as plt import numpy as np import math # Obtaining diameters histogram n = len(self.listCircles) # simple size # Number of bins according to Sturges equation numBins = math.floor(1 + math.log(n, 2)) diams = [circle.diameter for circle in self.listCircles] bins = np.linspace(min(diams), max(diams), numBins) hist, binEdges = np.histogram(diams, bins) nonZeroIndx = [i for i, k in enumerate(hist) if k != 0] histRed = hist[nonZeroIndx] histRedRel = [float(k)/n * 100 for k in histRed] nonZeroIndx4Bins = [k+1 for k in nonZeroIndx] binEdgesRed = binEdges[nonZeroIndx4Bins] d = binEdgesRed nD = histRedRel # plotting fig = plt.figure() ax = fig.add_subplot(111) ax.loglog(d, nD, 'ko', basex=2) ax.grid(ls='--', lw=0.5) return
# %% ''' BSD 2 license. Copyright (c) 2018, Universidad Nacional de Colombia, Andres Ariza-Triana and Ludger O. Suarez-Burgoa. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. '''